基本信息:
姓名:刘日成
出生年月:1986.03
学位:博士
职称:教授/博导
研究领域:深部复杂裂隙岩体非线性渗流机理、岩石力学、流体力学、工程力学
招收研究生专业:岩土工程、工程力学、土木水利
E-mail: liuricheng@cumt.edu.cn
个人简介:
刘日成,男,山东烟台人,教授,博导,中国矿业大学“优秀青年学者”。2010年7月获得山东大学城市地下空间工程专业学士学位,并被保送为岩土工程专业硕士研究生,2011年4月参与中日韩水环境保护项目赴日本长崎大学攻读硕士学位,2013年4月被保送为岩土工程专业博士研究生,师从蒋宇静教授,2016年3月获得日本长崎大学工学博士学位。2016年8月进入深部岩土力学与地下工程国家重点实验室岩石力学与工程研究所从事科研教学工作,2016年12月破格晋升为副教授,2019年12月破格晋升为教授。曾多次(2017.01-2017.06和2017.11-2020.01)前往日本长崎大学开展访学合作研究。
近10年来一直从事深部裂隙岩体分形特征、剪切-非线性渗流机理、深部地下能源开采与新能源地下存储等方面的研究工作。入选江苏省333高层次人才、江苏省优青、日本学术振兴会JSPS Fellow和中国科协青年人才托举工程;获山东省技术发明一等奖、中国发明协会发明创业成果奖一等奖(R1)、中国岩石力学与工程学会青年科技奖金奖(现改名为“钱七虎奖”)和科技进步一等奖、日本岩石力学学会优秀博士学位论文奖及优秀期刊论文奖、COGE期刊Scott Sloan最佳论文奖;主持国家自然科学基金面上项目与青年基金、国家重点研发计划子课题、博士后国际交流计划派出项目等课题16项,参与中日樱花计划2项、中日韩亚洲校园计划·1项、中俄“一带一路”创新合作国际交流项目1项、中美政府间国际科技创新合作重点专项1项;在IJRMMS、RMRE、TUST等国际权威期刊上,以第一/通讯作者发表SCI论文55篇,影响因子总和为256,其中8篇入选ESI高被引论文,以第一/通讯作者在《岩石力学与工程学报》、《岩土力学》等期刊发表EI论文10篇,研究成果已被引2802次,h指数为31,i10指数为59,单篇最高被引206次;以第一发明人授权发明专利12项(国际2项、国内10项)、软件著作权4件、出版英文专著1部;担任SCI期刊《岩石力学与工程学报(英文)》编委、《深地科学(英文)》和《应用力学学报》青年编委,兼任中国岩石力学与工程学会日本分会秘书长;受邀在2014年欧洲岩石力学大会、2016年和2017年日本岩石力学学会年度大会、第8、9、10届亚洲岩石力学大会、China Rock 2018、2019、2021等国内外学术会议作特邀或专题报告20余次,担任分会场主席1次。
科研项目及人才计划项目情况:
[1]国家自然科学基金面上项目,51979272,深部岩体三维裂隙网络高温-应力-渗流作用机理研究,2020.01-2023.12,60万元,在研,主持。
[2]中华人民共和国科技部,国家重点研发计划项目, 2020YFA0711800,页岩储层甲烷原位燃爆压裂理论与技术, 2020-12至2025-11, 2779万元,在研,子题主持。
[3]中华人民共和国科技部,重点研发计划(政府间国际科技创新合作),2022YFE0128300,干热岩水力压裂复合扰动诱发地震机理及监测方法,2023-01至2025-12, 199.76万元,在研,子题主持。
[4]中国工程院,战略研究与咨询项目,2022-XZ-51,新时代城市地下空间发展战略研究,2022.10-2023.9,150万,在研,子题主持
[5]江苏省科学技术厅,优秀青年基金项目, BK20211584,增强型地热系统水力剪切储层增透机理及其对采收率的影响规律, 2021-07至2024-06, 50万元,在研,主持
[6]江苏省科学技术厅,江苏省科技计划“一带一路”创新合作项目(中俄),废弃矿井再利用围岩稳定及防渗控制技术的联合研发,2020.6-2022.8,90万,结题,子题主持
[7]山东能源集团有限公司,9000B2022000200,山东省深层高温地热资源形成机制、分布规律研究及地热资源调查评价,2022-07至2023-12,1644万元,在研,子题主持
[8]国家自然科学基金委员会,青年科学基金项目, 51709260,基于分形理论的三维岩体裂隙网络非线性渗流机理研究, 2018-01-01至2020-12-31, 25万元,结题,主持。
[9]中国矿业大学,重大项目培育专项, 2021ZDPYYQ002,增强型地热系统水力剪切储层增透机理及其对采收率的影响机制, 2021-01至2023-12, 40万元,在研,主持。
[10]西安理工大学,国家重点实验室开放基金, 2020KFKT-13,基于CT扫描和3D打印的岩体三维裂隙网络剪切机理及非线性水力特征, 2021-01至2022-12, 7万元,结题,主持。
[11]中国矿业大学深部岩土力学与地下工程国家重点实验室,自主课题学科前沿专项, Z18011,基于分形重构的深部裂隙岩体渗透特性及气态能源开采研究, 2018-10至2020-09, 20万元,结题,主持。
[12]江苏省自然科学基金青年项目,BK20170276,深部岩体裂隙网络分形特性与渗流特性研究,2017.07-2020.06,20万元,结题,主持。
[13]中国博士后科学基金会,博士后国际交流计划派出项目, PC2018094,深部地下工程岩体的流-固-热-化多场耦合作用机理研究, 2018-07至2020-06, 30万元,结题,主持。
[14]中国矿业大学,学科前沿研究专项, 2017XKQY048,裂隙岩体分形与非线性渗流特性研究, 2017-01至2019-12, 20万元,结题,主持。
[15]中国博士后基金面上一等资助,2017M610360,三维岩体裂隙网络渗透系数预测模型研究,2017.04-2020.03,8万元,结题,主持。
[16]中央高校基本科研业务专项学科前沿项目,2017XKQY048,裂隙岩体分形与非线性渗流特性研究,2017.01-2019.12,20万元,结题,主持。
[17]日本学术振兴会(JSPS)特别研究员研究奖励费,17F17382,岩盤内水理物質移行機構の解明に基づく放射性廃棄物地層貯留安全性の評価,2017.11.01-2019.10.31,220万日元,结题,负责人。(国际合作项目,国内方面负责人)
[18]中央高校基本科研业务专项学科前沿项目,2018XKQYMS07,爆破荷载作用下深部硐室围岩损伤演化与动态失稳机理,2018.01-2020.12,20万元,结题,子题主持。
[19]浙江省山体地质灾害防治协同中心开放基金项目,PCMGH-2016-Z-01,基于3D打印技术的三维岩体裂隙网络非线性渗流机理研究,2016/11-2018/10, 5万元,结题,主持。
[20]中国矿业大学第九批青年教师启航计划项目,深部裂隙岩体渗流机理研究,2016/09-2018/08,3万元,结题,主持。
[21]入选日本学术振兴会“外国人特别研究员”(JSPS),2017年11月。
[22]入选中国科协第三届“青年人才托举工程”,2018年1月。
[23]入选中国博士后“国际交流计划派出项目”,2018年5月。
[24]入选中国矿业大学“优秀青年学者”,2021年12月。
[25]入选江苏省“333高层次人才培养工程”(第三层次),2022年01月。
代表性论文(*为通讯作者):
2023年度
[1]S. Liu, S. Li*,R. Liu*, L. Yu, Y. Wang. (2023): Experimental study on evolutions of normal stiffness of fractured granites after different temperature treatments. Journal of Central South University. (SCI检索) (accept)
[2]Z. Liu, S. Li,R. Liu*, C. Zheng. (2023): Nonlinear flow properties of Newtonian fluids through rough crossed fractures. Computer Modeling in Engineering and Sciences, 2023, 136(2): 1427-1440. (SCI检索)
[3]L. Liu, Z. Li, J. Wu, L. Yu, S. Li*,R. Liu*. (2023): Effect of chemical corrosion on propagation of complex fracture networks under different hydraulic pressures in enhanced geothermal systems. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9, 16. (SCI检索)
[4]季浩奇,刘日成*,蔚立元,李树忱,王晓琳. (2023):卸载速率对卸载诱发页岩滑移行为影响的试验研究。岩石力学与工程学报,已录用。
[5]刘尚,刘日成*,李树忱,蔚立元,胡明慧. (2023):化学腐蚀下节理花岗岩法向刚度演变规律试验研究。岩土力学,已录用。
[6]C. Wang,R. Liu, Y. Jiang, G. Wang, H. Luan. (2023): Effect of shear-induced contact area and aperture variations on nonlinear flow behavior in fractal rock fractures. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(2): 309-322, (SCI检索)
[7]蔚立元,杨瀚清,王晓琳,刘日成,王蓥森. (2023):循环剪切作用下三维粗糙裂隙非线性渗流特性数值模拟研究。岩土力学,已录用。
2022年度
[1]R. Liu, Y. Wang, B. Li, H. Jing, S. Li, H. Yang. (2022): Linear and nonlinear fluid flow responses of connected fractures subject to shearing under constant normal load and constant normal stiffness boundary conditions. Computers and Geotechnics, 2022, 141, 104517. (SCI检索)
[2]M. He,R. Liu*, Y. Xue, X. Feng, F. Dang. (2022): Modeling of Navier-Stokes flow through sheared rough-walled granite fractures split after thermal treatment. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8, 96. (SCI检索)
[3]Z. Li,R. Liu*, S. Li, H. Jing, X. Li, L. Yu. (2022): Estimates of strength and cracking behaviors of pre-flawed granite specimens treated by chemical corrosion under triaxial compression tests. Frontiers of Earth Science, 16(2): 411-434. (SCI检索)
[4]M. He, L. Yu,R. Liu*, Y. Jiang, Z. Li, X. Wang. (2022): Experimental investigation on mechanical behaviors of granites after high temperature exposure. Journal of Central South University, 29: 1332-1344. (SCI检索)
[5]Y. Wang,R. Liu*, H. Ji, S. Li*, L. Yu, X. Feng. (2022): Correlating mechanical properties to fractal dimensions of shales under uniaxial compression tests. Environmental Earth Sciences, 82, 2. (SCI检索)
[6]L. Yu, J. Zhang,R. Liu, S. Li, D. Liu, X. Wang. (2022): Estimation of the representative elementary volume of three-dimensional fracture networks based on permeability and trace map analysis: A case study. Engineering Geology, 309, 106848. (SCI检索)
[7]J. Zhang,R. Liu, L. Yu, S. Li, X. Wang, D. Liu. (2022): An equivalent pipe network modeling approach for characterizing fluid flow through three-dimensional fracture networks: Verification and applications. Water, 14, 1582. (SCI检索)
[8]D. Wu, L. Yu, M. Ju, S. Li,R. Liu, H. Su, L. Zhou. (2022): Study on the mode Ⅰ fracture properties of granites after heating and water-cooling treatments under different impact loadings. Rock Mechanics and Rock Engineering, 55: 4271-4290. (SCI检索)
[9]Z. Liu, S. Li, X. Feng,R. Liu. (2022): Numerical study on shear-induced nonlinear hydraulic properties of fluid flow through fractures: The role of initial normal stress. Geotechnique Letters, 12: 209-216. (SCI检索)
2021年度
[1]R. Liu, H. Jing, X. Li, Q. Yin, Z. Xu, M. He. (2021): An experimental study on fractal pore size distribution and hydro-mechanical properties of granites after high temperature treatment. Fractals, 29(4), 2150083. (SCI检索)
[2]刘日成,尹乾,杨瀚清,靖洪文,蒋宇静,蔚立元. (2021):恒定法向刚度边界条件下三维粗糙节理面循环剪切力学特性。岩石力学与工程学报,40(6):1092-1109。(EI检索)
[3]N. Huang,R. Liu*, Y. Jiang, Y. Cheng. (2021): Development and application of three-dimensional discrete fracture network modeling approach for fluid flow in fractured rock masses. Journal of Natural Gas Science and Engineering, 91, 103957. (SCI检索)
[4]B. Li, J. Wang,R. Liu*, Y. Jiang. (2021): Nonlinear fluid flow through three-dimensional rough fracture networks: Insights from 3D-printing, CT-scanning, and high-resolution numerical simulations. Journal of Rock Mechanics and Geotechnical Engineering, 13: 1020-1032. (SCI检索)
[5]B. Li, R. Bao, Y. Wang,R. Liu*, C. Zhao. (2021): Permeability evolution of two-dimensional fracture networks during shear under constant normal stiffness boundary conditions. Rock Mechanics and Rock Engineering, 54(1): 409-428. (SCI检索)
[6]Q. Zhang, X. Wang, B. Jiang,R. Liu*, G. Li. (2021): A finite strain solution for strain-softening rock mass around circular roadways. Tunnelling and Underground Space Technology, 111: 103873. (SCI检索)
[7]李博,汪佳飞,刘日成*,伍法权. (2021):岩石裂隙压剪变形破坏与非线性渗流特性。工程科学与技术,53(6):103-112。(EI检索)
[8]H. Yang, X. Wu, H. Jing, L. Yu,R. Liu. (2021): Physical and mechanical behaviors of red sandstones and marbles after high-temperature treatment. Lithosphere, 2021, 8062826. (SCI检索)
[9]X. Wang, T. Iura, Y. Jiang, Z. Wang,R. Liu. (2021): Deformation and mechanical characteristics of tunneling in squeezing ground: a case study of the west section of the Tawarazaka Tunnel in Japan. Tunnelling and Underground Space Technology, 109: 103697. (SCI检索)
[10]N. Huang, G. Han,R. Liu, Y. Jiang. (2021): Mechanical behaviors of artificial samples containing multiple parallel joints during shearing under constant normal stiffness conditions. Geotechnique Letters, 11(2): 133-139. (SCI检索)
[11]H. Yang, X. Wang, L. Yu,R. Liu. (2021): Effects of contact area and contact shape on nonlinear fluid flow properties of fractures by solving Navier-Stokes equations. Lithosphere, 2021, 8684428. (SCI检索)
[12]W. Xu, X. Li, Y. Zhang, X. Wang,R. Liu, Z. He, J. Fan. (2021): Aperture measurements and seepage properties of typical single natural fractures. Bulletin of Engineering Geology and the Environment, 80: 8043–8058. (SCI检索)
[13]W. Xu, Y. Zhang, X. Li, X. Wang,R. Liu, P. Zhao, Y. Zhang, J. Dai. Comprehensive identification of statistical homogeneity of fractured rock masses for a candidate HLW repository site, China. Engineering Geology, 293, 106279. (SCI检索)
[14]Z. Dou, S. Tang, X. Zhang,R. Liu, C. Zhuang, J. Wang, Z. Zhou. (2021): Influence of shear displacement on fluid flow and solute transport in a 3D rough fracture. Lithosphere, 2021, 1569736. (SCI检索)
[15]张悦,李晓昭,许文涛,章杨松,余兴建,刘日成. (2021):改进Miller法及其在裂隙岩体统计均质区划分的应用。岩石力学与工程学报,40(3):533-544。
[16]武东阳,蔚立元,苏海健,吴疆宇,刘日成,周健. (2021):单轴压缩下加锚裂隙类岩石试块裂纹扩展试验及PFC3D模拟。岩土力学,42(6):1681-1692。
[17]黄娜,蒋宇静,程远方,刘日成. (2021):基于3D打印技术的复杂三维粗糙裂隙网络渗流特性试验及数值模拟研究。岩土力学,42(6):1659-1668。
2020年度
[1]R. Liu, N. Huang, Y. Jiang, H. Jing, L. Yu. (2020): A numerical study of shear-induced evolutions of geometric and hydraulic properties of self-affine rough-walled rock fractures. International Journal of Rock Mechanics and Mining Sciences, 127: 104211. (SCI检索)
[2]R. Liu, C. Wang, B. Li, Y. Jiang, H. Jing. (2020): Modeling linear and nonlinear fluid flow through sheared rough-walled joints taking into account boundary stiffness. Computers and Geotechnics, 120: 103452. (SCI检索)
[3]R. Liu, N. Huang, Y. Jiang, G. Han, H. Jing. (2020): Effect of shear direction change on shear-flow-transport processes in single rough-walled rock fractures. Transport in Porous Media, 133(3): 373-395. (SCI检索)
[4]R. Liu, M. He, N. Huang, Y. Jiang, L. Yu. (2020): Three-dimensional double-rough-walled modeling of fluid flow through self-affine shear fractures. Journal of Rock Mechanics and Geotechnical Engineering, 12: 41-49. (SCI检索)
[5]R. Liu, S. Lou, X. Li, G. Han, Y. Jiang. (2020): Anisotropic surface roughness and shear behavior of rough-walled plaster joints under constant normal load and constant normal stiffness conditions. Journal of Rock Mechanics and Geotechnical Engineering, 12: 338-352. (SCI检索)
[6]R. Liu, L. Yu, Y. Gao, M. He, Y. Jiang. (2020): Analytical solutions for permeability of a three-dimensional fractal-like tree network model with fractures having variable widths. Fractals, 28(1): 2050013. (SCI检索)
[7]R. Liu, G. Han, Y. Jiang, L. Yu, M. He. (2020): Shear behavior of multi-joint specimens: role of surface roughness and spacing of joints, 10(2): 113-118. (SCI检索)
[8]N. Huang,R. Liu*, Y. Jiang. (2020): Evaluating the effect of aperture variation on the hydraulic properties of the three-dimensional fractal-like tree networks model. Fractals, 28(6): 2050112. (SCI检索)
[9]Q. Zhang, X. Quan, H. Wang, B. Jiang,R. Liu*. (2020): A numerical solution of a circular tunnel in a confining pressure-dependent strain-softening rock mass. Computers and Geotechnics, 121, 103473. (SCI检索)
[10]Q. Zhang, C. Shao, H. Wang, B. Jiang, Y. Jiang,R. Liu*. (2020): A fully coupled hydraulic-mechanical solution of a circular tunnel in strain-softening rock masses. Tunnelling and Underground Space Technology, 99, 103375. (SCI检索)
[11]J. Zhang,R. Liu, L. Yu, H. Jing, Q. Yin. (2020): Investigations on representative elementary volume and directional permeability of fractal-based fracture networks using polygon sub-models. Fractals, 28(5): 2050085. (SCI检索)
[12]Yu L, Zhang Z, Wu J,R. Liu, Qin H, Fan P. (2020): Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion. Theoretical and Applied Fracture Mechanics, 2020, 108: 102620. (SCI检索)
[13]Q. Yin, H. Jing,R. Liu, H. Su, L. Yu, G. Han. (2020): Pore characteristics and nonlinear flow behaviors of granite exposed to high temperature. Bulletin of Engineering Geology and the Environment, 79(3): 1239-1257. (SCI检索)
[14]G. Han, H. Jing, Y. Jiang,R. Liu, J Wu. (2020): Effect of cyclic loading on the shear behaviours of both unfilled and infilled rough rock joints under constant stiffness conditions. Rock Mechanics and Rock Engineering, 53: 31-57. (SCI检索)
[15]C. Wang, Y. Jiang,R. Liu, C. Wang, Z. Zhang, S. Sugimoto. (2020): Experimental study of the nonlinear flow characteristics of fluid in 3D rough-walled fractures during shear process. Rock Mechanics and Rock Engineering, 53(6): 2581-2604. (SCI检索)
[16]Q. Zhang, W. He, H. Wang,R. Liu, M. Lu, B. Jiang. (2020): Elasto-plastic solutions for expanding cavities in strain-hardening and/or softening soils. Tunnelling and Underground Space Technology, 107: 103660. (SCI检索)
[17]X. Wang, Y. Jiang,R. Liu, B. Li, Z. Wang. (2019): A numerical study of equivalent permeability of 2-D fractal rock fracture networks. Fractals, 28(1): 2050014. (SCI检索)
[18]Y. Gao,R. Liu, H. Jing, W. Chen, Q. Yin. (2019): Hydraulic properties of single fractures grouted by different types of carbon nanomaterial-based cement composites. Bulletin of Engineering Geology and the Environment, 79(5): 2411-2421. (SCI检索)
[19]Q. Yin, X. Li, L. Yu, M. He,R. Liu. (2020): Solute Removal Analysis of a Large-scale Fracture Plane Considering Different Flow Paths and Different Hydraulic Head Differences.CMES-Computer Modeling in Engineering & Sciences, 124(1), 345–373. (SCI检索)
[20]尹乾,靖洪文,孟波,刘日成,吴应杰.恒定法向刚度条件下三维粗糙裂隙面剪切力学特性,岩石力学与工程学报,2020,39(11):2213-2225. (EI检索)
2019年度
[1]R. Liu, T. Zhu, Y. Jiang, B. Li, L. Yu, Y. Du, Y. Wang. (2019): A predictive model correlating permeability to two-dimensional fracture network parameters. Bulletin of Engineering Geology and the Environment, 78(3): 1589-1605. (SCI检索)
[2]R. Liu, S. Lou, Y. Jiang. (2019): Recent advances in fluid flow in fractured porous media. Processes, 7(5), 255. (SCI检索)
[3]N. Huang,R. Liu*, Y. Jiang, Y. Cheng, B. Li. (2019): Shear-flow coupling characteristics of a three-dimensional discrete fracture network-fault model considering stress-induced aperture variations. Journal of Hydrology, 571: 416-424. (SCI检索)
[4]B. Li, Y. Li, Z. Zhao,R. Liu*. (2019): A mechanical-hydraulic-solute transport model for rough-walled rock fractures subjected to shear under constant normal stiffness conditions. Journal of Hydrology, 579: 124153. (SCI检索)
[5]T. Meng,R. Liu*, X. Meng, D. Zhang, Y Hu. (2019): Evolution of the permeability and pore structure of transversely isotropic calcareous sediments subjected to triaxial pressure and high temperature. Engineering Geology, 253: 27-35. (SCI检索)
[6]B. Li,R. Liu*, Y. Jiang. (2019): An experimental method to visualize shear-induced channelization of fluid flow in a rough-walled fracture. Hydrogeology Journal, 27(8): 3097-3106. (SCI检索)
[7]Q. Yin, H. Jing, G. Ma, H. Su,R. Liu*. (2019): Laboratory investigation of hydraulic properties of deformable rock samples subjected to different loading paths. Hydrogeology Journal, 27(7): 2617-2635. (SCI检索)
[8]Q. Yin,R. Liu, H. Jing, H. Su, L. Yu, L. He. (2019): Experimental study of nonlinear flow behaviors through fractured rock samples after high temperature exposure. Rock Mechanics and Rock Engineering, 52(9): 2963-2983. (SCI检索)
[9]N. Huang, Y. Jiang,R. Liu, B. Li, S. Sugimoto. (2019): A novel three-dimensional discrete fracture network model for investigating the role of aperture heterogeneity on fluid flow through fractured rock masses. International Journal of Rock Mechanics and Mining sciences, 116: 25-37. (SCI检索)
[10]N. Huang, Y. Jiang,R. Liu, B. Li. (2019): Experimental and numerical studies of the hydraulic properties of three-dimensional fracture networks with spatially distributed apertures. Rock Mechanics and Rock Engineering, 52: 4731-4746. (SCI检索)
[11]Q. Zhang, C. Peng,R. Liu, B. Jiang, M. Lu. (2019): Analytical solutions for the mechanical behaviors of a hard roof subjected to any form of front abutment pressures. Tunnelling and Underground Space Technology, 85: 128-139. (SCI检索)
[12]G. Han, H. Jing,R. Liu, H. Su, J. Wu, J. Wei. (2019): Experimental investigation on the mechanical behavior of red sandstone under the coupled effects of temperature and acidic etching. Arabian Journal of Geosciences, 12(18): 586. (SCI检索)
[13]G. Han, H. Jing, H. Su,R. Liu, Q. Yin, J. Wu. (2019): Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environmental Earth Science, 78: 146. (SCI检索)
[14]B. Li, Y. Mo, L. Zou,R. Liu, V. Cvetkovic. (2019): Influence of surface roughness on fluid flow and solute transport through 3D crossed rock fractures. Journal of Hydrology, No.124284. (SCI检索)
2018年度
[1]R. Liu, B. Li, L. Yu, Y. Jiang, H. Jing. (2018): A discrete-fracture-network fault model revealing permeability and aperture evolutions of a fault after earthquakes. International Journal of Rock Mechanics and Mining Sciences, 107: 19-24. (SCI检索)
[2]R. Liu, B. Li, Y. Jiang, L. Yu. (2018): A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks. Advances in Water Resources, 111: 289-300. (SCI检索)
[3]R. Liu, B. Li, H. Jing, W. Wei. (2018): Analytical solutions for water-gas flow through 3D rock fracture networks subjected to triaxial stresses. Fractals, 26(3): 1850053. (SCI检索)
[4]R. Liu, B. Li, Y. Jiang, H. Jing, L. Yu. (2018): Relationship between equivalent permeability and fractal dimension of dual-porosity media subjected to fluid-rock reaction under triaxial stresses. Fractals, 26(5): 1850072. (SCI检索)
[5]R. Liu, N. Huang, Y. Jiang, H. Jing, B. Li, Y. Xia. (2018): Effect of shear displacement on the directivity of permeability in 3D self-affine fractal fractures. Geofluids, 1723019. (SCI检索)
[6]R. Liu, T. Zhu, Y. Jiang, B. Li, L. Yu, Y. Du, Y. Wang. (2019): A predictive model correlating permeability to two-dimensional fracture network parameters. Bulletin of Engineering Geology and the Environment, doi:10.1007/s10064-018-1231-8. (SCI检索) (accept)
[7]R. Liu, Y. Jiang, H. Jing, L. Yu. (2018): Nonlinear flow characteristics of a system of two intersecting fractures with different apertures. Processes, 6(7): 94. (SCI检索)
[8]R. Liu, Y. Jiang. (2018): Special Issue: Fluid Flow in Fractured Porous Media. Processes, 6(10): 178. (SCI检索)
[9]N. Huang,R. Liu*, Y. Jiang, B. Li, L. Yu. (2018): Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models. Advances in Water Resources, 113: 30-41. (SCI检索)
[10]L. Yu, H. Su,R. Liu*, H. Jing, G. Li, M. Li. (2018): Effect of thermal treatment on the dynamic mechanical behaviors of limestone in quasi-vacuum and air-filled environments. Latin American Journal of Solids and Structures, 15(3): e25. (SCI检索)
[11]Q. Yin, H. Jing, G. Ma, H. Su,R. Liu*. (2018): Investigating the roles of included angle and loading condition on the critical hydraulic gradient of real rock fracture networks. Rock Mechanics and Rock Engineering, 51(10), 3167-3177. (SCI检索)
[12]N. Huang, Y. Jiang,R. Liu. (2018): Size effect on the permeability and shear induced flow anisotropy of fractal rock fractures. Fractals, 26(2): 1840001. (SCI检索)
[13]Q. Yin, H. Jing,R. Liu, G. Ma, L Yu, H Su. (2018): Experimental study on stress-dependent nonlinear flow behavior and normalized transmissivity of real rock fracture networks. Geofluids, 8217921. (SCI检索)
[14]C. Wang, Y. Jiang,R. Liu, C. Wang. (2018): Visualized experimental investigation on the gas-water distribution characteristics in intersecting fractures. Geofluids, 4273450. (SCI检索)
[15]J. Zhang, L. Yu, H. Jing,R. Liu. (2018): Estimating the effect of fractal dimension on representative elementary volume of randomly distributed rock fracture networks. Geofluids, 7206074. (SCI检索)
[16]Z. Wang, W. Li, L. Bi, L. Qiao,R. Liu, J. Liu. (2018): Estimation of the REV size and equivalent permeability coefficient of fractured rock masses with an emphasis on comparing the radial and unidirectional flow configurations. Rock Mechanics and Rock Engineering, 51(5): 1457-1471. (SCI检索)
[17]G. Han, H. Jing, Y. Jiang,R. Liu, H. Su, J. Wu. (2018): The effect of joint dip angle on the mechanical behavior of infilled jointed rock masses under uniaxial and biaxial compressions. Processes, 6: 49. (SCI检索)
2017年度
[1]R. Liu, L. Yu, Y. Jiang. (2017): Quantitative estimates of normalized transmissivity and the onset of nonlinear fluid flow through rough rock fractures. Rock Mechanics and Rock Engineering, 50: 1063-1071.(SCI检索)
[2]R. Liu, L. Yu, Y. Jiang, Y. Wang, B. Li. (2017): Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks. Journal of Natural Gas Science and Engineering, 45: 771-785. (SCI检索)
[3]R. Liu, H. Jing, L. He, T. Zhu, L. Yu, H. Su. (2017): An experimental study of the effect of fillings on hydraulic properties of single fractures. Environmental Earth Sciences, 76: 684. (SCI检索)
[4]N. Huang,R. Liu*, Y. Jiang. (2017): Numerical study of the geometrical and hydraulic characteristics of 3D self-affine rough fractures during shear. Journal of Natural Gas Science and Engineering, 45: 127-142. (SCI检索)
[5]L. Yu,R. Liu*, Y. Jiang. (2017): A review of critical conditions for the onset of nonlinear fluid flow in rock fractures. Geofluids, 2176932. (SCI检索)
[6]L. Yu, H. Su,R. Liu*, H. Jing, Q. Meng, N. Luo. (2017): Experimental study of the influence of loading rate on tensile mechanical behavior of sandstone damaged by blasting. Arabian Journal of Geosciences, 10: 432. (SCI检索)
[7]Q. Yin, G. Ma, H. Jing, H Wang, H. Su, Y. Wang,R. Liu*. (2017): Hydraulic properties of 3D rough-walled fractures during shearing: an experimental study. Journal of Hydrology, 555: 169-184. (SCI检索)
[8]L. Yu, J. Zhang,R. Liu, H. Jing, K. Xie. (2017): Semi-empirical solutions for fractal-based hydraulic properties of 3D rock fracture networks. Geotechnique Letters, 7(3): 266-271. (SCI检索)
[9]N. Huang, Y. Jiang,R. Liu, B. Li. (2017): Estimation of permeability of 3-D discrete fracture networks: An alternative possibility based on trace map analysis. Engineering Geology, 226: 12-19. (SCI检索)
[10]N. Huang, Y. Jiang,R. Liu, B. Li. (2017): A predictive model of permeability for fractal-based rough rock fractures during shear. Fractals, 25(5): 1750051. (SCI检索)
[11]J. Cai, W. Wei, X. Hu,R. Liu, J. Wang. (2017): Fractal characterization of dynamic fracture network extension in porous media. Fractals, 25(2): 1750023. (SCI检索)
[12]L. Yu, T. Zhang, H. Su, H. Jing,R. Liu, Q. Zhang. (2017): Influence of heat treatment on dynamic and physical properties of anthracite coal. Geotechnique Letters, 7(3): 253-259. (SCI检索)
[13]杜岩,谢谟文,蒋宇静,宋红克,李博,刘日成. (2017):应用激光多普勒测振仪的岩块体累计损伤评价试验研究,工程科学学报,39(1): 141-146. (EI检索)
2016年度
[1]R. Liu, B. Li, Y. Jiang. Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Advances in Water Resources, 2016, 88: 53-65. (SCI检索)
[2]R. Liu, Y. Jiang, B. Li, L. Yu. Estimating permeability of porous media based on modified Hagen–Poiseuille flow in tortuous capillaries with variable lengths. Microfluidics and Nanofluidics, 2016, 20(8): 120. (SCI检索)
[3]R. Liu, L. Yu, Y. Jiang. Fractal analysis of directional permeability of gas shale fracture networks: a numerical study. Journal of Natural Gas Science and Engineering, 2016, 33: 1330-1341. (SCI检索)
[4]R. Liu, B. Li, Y. Jiang, N. Huang. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks. Hydrogeology Journal, 2016, 24: 1623-1649. (SCI检索)
[5]R. Liu, B. Li, Y. Jiang. A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks. Computers and Geotechnics, 2016, 75: 57-68. (SCI检索)
[6]R. Liu, Y. Jiang, B. Li. (2016): Effects of intersection and dead-end of fractures on nonlinear flow and particle transport in rock fracture networks. Geosciences Journal, 20: 415-426. (SCI检索)
[7]B. Li,R. Liu*, Y. Jiang. (2016): Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. Journal of Hydrology, 2016, 538: 440-453. (SCI检索)
[8]B. Li,R. Liu*, Y. Jiang. A multiple fractal model for estimating permeability of dual-porosity media. Journal of Hydrology, 2016, 540: 659-669. (SCI检索)
[9]N. Huang, Y. Jiang, B. Li,R. Liu. A numerical method for simulating fluid flow through 3-D fracture networks. Journal of Natural Gas Science and Engineering, 2016, 33: 1271-1281. (SCI检索)
[10]Y. Wang, X. Yin, H. Jiang,R. Liu, H. Su. A novel cloud model for risk analysis of water inrush in karst tunnels. Environmental Earth Sciences, 2016, 75: 1450. (SCI检索)
[11]N. Huang, Y. Jiang,R. Liu, B. Li. A fast calculation method for estimating the representative elementary volume of three-dimensional fracture network. Special Topics and Reviews in Porous Media, 2016, 7(2): 99-106. (EI检索)
[12]刘日成,李博,蒋宇静,蔚立元.三维交叉裂隙渗流特性的实验和数值模拟研究.岩石力学与工程学报, 2016, 35(增2): 3813-3821. (EI检索)
[13]刘日成,李博,蒋宇静,蔚立元.等效水力隙宽和水力梯度对岩体裂隙网络非线性渗流特性的影响.岩土力学, 2016, 37(11): 3165-3174. (EI检索)
[14]刘日成,蒋宇静,李博,蔚立元,杜岩.岩体裂隙网络非线性渗流特性研究.岩土力学, 2016, 37(10): 2394-2400. (EI检索)
[15]刘日成,蒋宇静,李博,王肖珊,徐帮树,蔚立元.基于逆Broyden秩1拟牛顿迭代法的岩体裂隙网络渗流特性研究.岩土力学, 2016, 37(1): 219-228. (EI检索)
2015年度
[1]R. Liu, Y. Jiang, B. Li, X. Wang. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Computers and Geotechnics, 2015, 65: 45-55. (SCI检索)
[2]刘日成,蒋宇静,李树忱,李博,王肖珊.交叉裂隙水力学开度的计算及非线性水力特性研究.岩土力学, 2015, 36(6): 1581-1590. (EI检索)
2014年度
[1]刘日成,蒋宇静,李博,王肖珊,徐帮树.岩体裂隙网络等效渗透系数方向性的数值计算.岩土力学, 2014, 35(8): 2394-2400. (EI检索)
发明专利:
[1]刘日成,靖洪文,李树忱,蔚立元,冯现大,刘枫,王蓥森.УСТРОЙСТВОИСПОСОБПРОВЕДЕНИЯИСПЫТАНИЯПРОСАЧИВАНИЯПРИСДВИГЕДЛЯСЕТИТРЕЩИН,2777701,俄罗斯,2022.8.8.(授权)
[2]刘日成,蔚立元,靖洪文,李树忱,冯现大,李志聪,刘尚. Device and method for shear and two-phase flow test of fracture network,500448,卢森堡,2022.8.22.(授权)
[3]刘日成,党文刚,李树忱,蔚立元,张强,李博,刘尚,胡明慧.恒定法向刚度条件下岩石结构面动态双向剪切实验系统,CN202210136156.7,中国,2022.(授权)
[4]刘日成,胡明慧,蔚立元,李树忱,张强,李博,贾世平,于峰.岩石结构面多向自由剪切实验系统与实验方法,CN 202210310585.1,中国,2022.(授权)
[5]刘日成,李树忱,刘振国,蔚立元,刘尚,刘兰富,刘枫,王蓥森.一种塑性混凝土地下连续墙锚注一体化结构与施工方法,ZL2021114708241,中国,2022.06.03.(授权)
[6]刘日成,蔚立元,李树忱,朱欣杰,程舍予,张晶,王晓琳,胡明慧.水力剪切刺激干热岩储层增透模拟实验系统与实验方法,ZL202111470121.9,中国,2022.06.10.(授权)
[7]刘日成,朱欣杰,李树忱,蔚立元,张强,吴学震,杨瀚清,韩刚.岩石结构面多向自由剪切-渗流可视化实验系统与方法,CN202210310033.0,中国,2022.12.23.(授权)
[8]刘日成,尹乾,靖洪文,蔚立元,韩观胜,蒋宇静.一种用于裂隙网络剪切渗流试验装置及其试验方法,ZL2020107041559,中国,2021.(授权)
[9]刘日成,蔚立元,靖洪文,尹乾,韩观胜.一种裂隙网络剪切-两相流试验装置及试验方法,ZL2020107041898,中国,2021.(授权)
[10]刘日成,蔚立元,张晶,张站群.一种用于三维裂隙岩样水-力耦合加载装置及加载方法,ZL2018104364005,中国,2020.(授权)
[11]刘日成,靖洪文,张晶,蔚立元,苏海健.岩体裂隙网络渗流各向异性测试及可视化系统,ZL2017101479642,中国,2020.(授权)
[12]刘日成,蔚立元,靖洪文,李光雷,谢凯.岩体裂隙网络渗透系数方向性测试及可视化系统,ZL2017101479765,中国,2020.(授权)
[13]蔚立元,刘日成,张涛,李卫,鞠明和,陈彦龙,李文杰,于峰.一种隧道支护杆输送机器人,ZL202210548789.9,中国,2023.02.17.(授权)
[14]刘振国,刘日成,刀剑文,李树忱,彭宏,蔚立元,郑长洲,陈占江,王玉,李蓉.一种双层HDER膜片锁接头连接装置及使用方法,ZL202210491004.9,2023.(授权)
[15]吴疆宇,尹乾,刘日成,马丹,蔚立元,姬永生,王逸鸣.用于深地工程围岩加固的木质纳米纤维素-纳米水泥改性注浆材料及其制备方法,ZL202111491044.5,中国,2023.3.3.(授权)
[16]李树忱,刘日成,赵世森,童里,王曼灵,彭科峰,陈祎,王新宇.一种丙烯酸树脂注浆材料及其制备工艺,ZL202210027057.5,中国,2022.11.11.(授权)
[17]李树忱,刘日成,万泽恩,陈祎,刘祥坤,王新宇,彭科峰,童里.一种发泡堵水用有机无机杂化注浆材料及制备工艺,CN202210027030.6,中国,2022.11.29.(授权)
[18]李树忱,刘日成,万泽恩,陈祎,刘祥坤,王新宇,彭科峰,童里.一种改性硅酸盐注浆加固材料及其制备方法与应用,CN202210026813.2,中国,2022.(授权)
[19]尹乾,刘日成,靖洪文,刘江峰,蔚立元,江郑.一种应力作用下深部硐室裂隙围岩渗透试验装置及方法,ZL202011372184.6,中国,2022.(授权)
[20]蔚立元,刘日成,李树忧,苏海健,张明伟,武东阳,韩刚.一种电缆隧道智能巡检机器人,ZL202210558760.9,中国,2022.(授权)
[21]李树忱,万泽恩,刘日成,彭科峰,周慧颖,童里,王新宇,陈祎.一种低温加固用有机无机杂化注浆材料及其制备方法与应用,CN202210026812.8,中国,2022.11.29.(授权)
[22]尹乾,张强,邓天慈,吴疆宇,刘日成,靖洪文.一种三维粗糙裂隙面卸荷诱发剪切滑移试验装置及方法,ZL 202111084572.9,中国,2022.5.24.(授权)
[23]李博,赵志宏,叶鑫娜,沙鹏,刘日成,吴学震.一种高温和渗流作用下的测验岩石用的真三轴试验系统,ZL201810425000.4,中国,2020.9.4.(授权)
[24]李博,夏才初,杜时贵,陈咭仟,刘日成,陈忠清,钟振.考虑岩石节理剪切过程中THMC耦合作用的试验系统,ZL201610732783.1,中国,2019.4.5.(授权)
[25]蔚立元,顾金才,靖洪文,苏海健,吴兴杰,刘日成.一种深长隧道突水突泥三维模型试验装置及方法,ZL201510874596.2,中国,2017.7.7.(授权)
荣誉奖励
[1]2023年01月,获COGE Scott Sloan Best Paper Award 2021(排名1)
[2]2022年12月,获徐州市自然科学优秀学术论文三等奖(1/6)
[3]2022年12月,获山东省技术发明一等奖(11/15)
[4]2022年10月,获中国发明协会发明创业成果奖一等奖(1/6)
[5]2022年10月,获中国矿业大学第一届“优秀青年教师奖教金”(排名1)
[6]2022年01月,入选江苏省333高层次人才(第三层次)
[7]2021年01月,获中国产学研合作促进会合作创新成果一等奖(8/10)
[8]2020年11月,获江苏省科学技术三等奖(基础类)(1/7)
[9]2019年09月,获中国岩石力学与工程学会科技进步一等奖(13/15)
[10]2018年09月,获中国岩石力学与工程学会“青年科技奖”(金奖)(排名1)
[11]2018年05月,入选中国博士后“国际交流计划派出项目”
[12]2018年01月,入选中国科协第三届“青年人才托举工程”人才项目
[13]2017年11月,入选日本学术振兴会“外国人特别研究员”(JSPS Fellow)
[14]2017年06月,获日本岩石力学学会优秀博士学位论文奖(排名1)
[15]2016年06月,获日本岩石力学学会优秀期刊论文奖(排名1)
[16]2016年03月,获日本长崎大学校长奖(排名1)
[17]2015年07月,获日本长崎大学特别研究奖学金
[18]2015年04月,获日本地盘工学会九州支部优良学生奖
[19]2014年10月,获亚洲岩石力学大会青年学者优秀论文奖学金
[20]2013年06月,获日本长崎大学和韩国济州大学工学科学术交流会优秀论文主席奖
[21]2013年04月,获国家留学基金委(CSC)公派留学奖学金
[22]2012年04月,获基于日中韩大学间水环境技术者培育的外国留学生奖学金
[23]2011年04月,获日本JASSO学习奖励费奖学金
联系方式
通讯地址:江苏省徐州市泉山区中国矿业大学深部岩土国家重点实验室
Email:liuricheng@cumt.edu.cn
联系电话:13952149590